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When hyperpolarized noble gases are brought into the bore of a superconducting magnet for magnetic
resonance imaging (MRI) or spectroscopy studies, the gases must pass through substantial field gradients,
which can cause rapid longitudinal relaxation. In this communication, we present a means of calculating
this spatially dependent relaxation rate in the fringe field of typical magnets. We then compare these pre-
dictions to experimental measurements of 3He relaxation at various positions near a medium-bore 2-T
small animal MRI system. The calculated and measured relaxation rates on the central axis of the magnet
agree well and show a maximum 3He relaxation rate of 3.83 � 10�3 s�1 (T1 = 4.4 min) at a distance of
47 cm from the magnet isocenter. We also show that if this magnet were self-shielded, its minimum
T1 would drop to 1.2 min. In contrast, a typical self-shielded 1.5-T clinical MRI scanner will induce a min-
imum on-axis T1 of 12 min. Additionally, we show that the cylindrically symmetric fields of these mag-
nets enable gradient-induced relaxation to be calculated using only knowledge of the on-axis
longitudinal field, which can either be measured directly or calculated from a simple field model. Thus,
while most MRI magnets employ complex and proprietary current configurations, we show that their
fringe fields and the resulting gradient-induced relaxation are well approximated by simple solenoid
models. Finally, our modeling also demonstrates that relaxation rates can increase by nearly an order
of magnitude at radial distances equivalent to the solenoid radius.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Magnetic resonance imaging (MRI) and nuclear magnetic reso-
nance (NMR) spectroscopy using the hyperpolarized (HP) gases
3He and 129Xe have emerged as important techniques for studying
lung function [1] with additional applications in areas such as
imaging the brain, the development of biosensors [2], and materi-
als science [3,4]. Hyperpolarized gases deliver large MR signals by
virtue of their high nuclear spin polarizations, which are typically
orders of magnitude greater than those attainable at thermal equi-
librium. Since the degree of nuclear spin alignment drives the sig-
nal-to-noise ratio (SNR) of the images and spectra, extraordinary
efforts have been applied to increase the nuclear polarization.
Key steps have included the development of spectrally narrowed
high-power lasers [3], the introduction of spin-exchange optical
pumping (SEOP) using alkali metal hybrids [4,5], and the develop-
ment of large-scale 129Xe polarizers [6]. In recent years, polariza-
tion levels as high as 81% have been reported for 3He [7], and
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64% has been reported for 129Xe produced in volumes of several li-
ters [6].

Relative to increasing polarization, less attention has been ap-
plied to retaining the hard-won polarization until it can be used.
Once the polarization process is stopped, the nuclei will inevitably
relax back to their thermal equilibrium state, where polarization is
negligible. Therefore, it is the degree of polarization that is actually
delivered to the objects under study that is ultimately important.
Hence, every effort must also be made to ensure that longitudinal
relaxation is as slow as possible. Unlike the radioactive decay of
nuclear isotopes, which is characterized by well-defined half-lives,
the longitudinal relaxation time (T1) of noble gases can vary mas-
sively, ranging from hundreds of hours for 3He [7] to only a few
seconds [8].

The mechanisms driving T1 relaxation can be broadly character-
ized as intrinsic relaxation, which cannot be avoided, and extrinsic
relaxation, which can, in principle, be engineered to become negli-
gible, but in practice dominates the signal loss. Intrinsic relaxation
of 3He is driven by the dipole–dipole interaction during collisions
with other 3He atoms and has been shown theoretically by New-
bury et al. to give a T1 of �744 h-amg (an amagat is the density
of 1 atm of gas at 273 K) [9]. Intrinsic relaxation for 129Xe, which
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is driven by the spin-rotation interactions [10] and chemical shift
anisotropy [11] caused by binary collisions and the formation of
transient Xe–Xe van der Waals molecules [12], has been shown
by Chann et al. to provide a T1 of 4.1 h at 1 amg [13].

The extrinsic relaxation mechanisms include relaxation result-
ing from collisions with paramagnetic atoms [14,15] such as O2,
collisions with surfaces, relaxation induced by electromagnetic
noise, and diffusion through magnetic field gradients [16]. Oxy-
gen-induced relaxation is well understood, contributing a room
temperature T1 of 2.23 s-amg for 3He [15] and 2.03 s-amg for
129Xe [14]. Despite its potent relaxivity, the effects of oxygen can
be readily reduced to negligible levels by appropriate evacuation
and/or purging of vessels in which HP gases are to be stored [17].
Moreover, surface-induced relaxation, while still not fully under-
stood, has been effectively mitigated. 3He relaxation in glass cells
coated with alkali metals, is now characterized by T1 values
exceeding hundreds of hours [7], even enabling HP 3He to be pro-
duced centrally and shipped all over the globe [18].Wall relaxation
of 129Xe has also been reduced to an extraordinary extent with a
recent report of TW

1 ¼ 176 h in high magnetic fields [19].
However, of specific importance to MRI and NMR applications

of HP gases is their relaxation in the strong external transverse
magnetic field gradient that leads from the periphery of the super-
conducting magnet into its isocenter. In all high-field experiments,
HP gases must be transported from the low-field region outside the
magnet, where they are produced to the high-field detection region
within the magnet. This necessitates passing through strong mag-
netic field gradients. Although gradient-induced relaxation has
been well studied [16] and can be made negligible in homogeneous
fields such as Helmholtz pairs, solenoids, or even magnetostatic
cavities [20], this mechanism has not been considered for the re-
gions peripheral to these magnet structures. The effect is of obvi-
ous importance for clinical studies, where the 3He or 129Xe must
pass through external gradient to be delivered to the patient. It
can have an even greater impact in small animal imaging studies,
where HP gases are typically delivered over an extended period
of several minutes [21], during which gradient-induced relaxation
can dramatically depolarize the gas in the reservoir residing in the
fringe field of the magnet [22]. In addition to reducing SNR, this un-
wanted relaxation complicates the interpretation of experiments—
for example, in regional ventilation measurements [23] that rely on
the magnitude of the HP signal for quantification.

The aim of this manuscript is to calculate the external field
inhomogeneity of a variety of scanner designs, predict the induced
relaxation rates, and identify the spatial locations, where this effect
is of greatest concern. We validate the calculations by comparing
predicted and observed 3He relaxation rates for a specific magnet
geometry we routinely employ for small animal HP gas MRI. Final-
ly, because most MRI magnet designs are complex and proprietary,
we also show a means to make practical estimates of the gradient-
induced T1 in the vicinity of a clinical scanner, without requiring
exact knowledge of the current configuration in magnet. We dem-
onstrate that, even when extended to a more complicated self-
shielded clinical magnet, the calculated relaxation rate predicted
using our simplified model agrees well with the rate predicted
using the more complicated exact current configuration.

2. Theory

The longitudinal relaxation rate of HP gases induced by diffu-
sion through transverse magnetic field gradients, 1=TG

1 , can be ex-
pressed as [16]

1
TG

1

¼ D
j~rBxj2 þ j~rByj2

B2
0

1

1þ ðx0scÞ2
; ð1Þ
where jr
!

Bxj2 is defined as (oBx/ox)2 + (oBx/oy)2 + (oBx/oz)2, D is the
diffusion constant of HP gas, x0 is the nuclear resonance frequency
at the static magnetic field strength, B0, and the relevant correlation
time, sc, is approximately the mean time between HP gas collisions.
As first explained by Gamblin and Carver [24], it is the diffusion of
gas atoms through the gradients of the transverse magnetic fields
jr
!

Bxj2 and jr
!

Byj2 that causes relaxation. In the atoms’ reference
frame, their random Brownian motion causes the gradients to ap-
pear as randomly fluctuating transverse magnetic fields, which
can induce spin flips just as a transverse radio frequency pulse
would. For common situations Eq. (1) is amenable to several simpli-
fications. Firstly, the last term approaches unity under low-field
conditions, an assumption which is valid for 3He under our experi-
mental conditions (it is 0.99 at 2 T), given correlation times of
0.29 ns at 300 K for 1 atm [25]. Secondly, since typical superconduc-
ting MR magnets possess cylindrical symmetry, i.e. an azimuthally
symmetric current distribution, the polar component of the field
B/ is explicitly zero, leaving the only non-trivial components Bz,
where ẑ lies along the central axis of the field, and Bq, where q̂ is
the radial component, which is perpendicular to the central axis.
Moreover, the azimuthally symmetric current distribution assures
that Bz(q, Z) and Bq(q, z) are functions only of q and z and do not de-
pend on /. For this type of symmetry, as we show in Appendix A, it
is possible to transform jr

!
Bxj2 þ jr

!
Byj2 in Eq. (1) into cylindrical

form with jr
!

Bqj2 þ B2
q=q2, and Eq. (1) can be rewritten as

1
TG

1

¼ D
jr
!

Bqj2 þ B2
q=q2

B2
0

: ð2Þ
2.1. On-axis relaxation rate

While relaxation anywhere near the superconducting magnet is
potentially important, useful insights can be gained by first consid-
ering only the relaxation behavior along the z-axis. For our case of
azimuthal symmetry, jr

!
Bqj2 ¼ j@Bq=@qj2, because Bq is zero

on-axis, and thus has no non-zero z-derivative along the z-axis.
Moreover, as q ? 0, Bq/q ? oBq/oq, and we can exploit the
divergence-free nature of the magnetic field (r

!
�~B ¼ 0) to relate

the q and z-derivatives. For azimuthal symmetry and B/ = 0, only
two terms of the divergence equation are non-zero giving

r
!
� B
!
¼ 1

q
@

@q
ðqBqÞ þ

@

@z
Bz ¼ 0; ð3Þ

which yields the relationship @Bq=@q ¼ � 1
2 @Bz=@z. Making this sub-

stitution into Eq. (2) gives us, for the case of q = 0, the gradient-in-
duced relaxation rate in terms of only Bz and its z-derivative

1
TG

1

¼ D
2

@

@z
Bð0Þz ð0; zÞ

� �2
,
ðBzð0; zÞÞ2: ð4Þ
2.2. Off-axis relaxation rates

Considering relaxation off-axis for small values of q (i.e., near
the central axis), we show through symmetry arguments already
outlined and further approximations detailed in Appendix B that
it is possible to express both Bq and Bz in terms of only Bz and its
derivatives as

Bzðq; zÞ ’ Bzð0; zÞ �
q2

4
@2

@z2 Bzð0; zÞ; ð5aÞ

Bqðq; zÞ ’ �
q
2
@

@z
Bzð0; zÞ þ

q3

16
@3

@z3 Bzð0; zÞ: ð5bÞ

These relations make it possible to extend beyond Eq. (4) and ac-
count for relaxation near the central axis. Substituting Eqs. (5a)
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and (5b) into Eq. (2) and making the near-axis approximation
B0 � Bz yields

1
TG

1

�D
�1
2

@

@z
Bzð0;zÞþ

3q2

16
@3

@z3 Bzð0;zÞ
 !2
2
4
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@2

@z2 Bzð0;zÞþ
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16
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 !2

3
5= Bzð0;zÞ�

q2

4
@2

@z2 Bzð0;zÞ
 !2

:

ð6Þ

Note that this expression, in the limit q ? 0, reduces to the simple
on-axis result given in Eq. (4).

The exact form of Bz(0, z) depends on the geometry of the mag-
net and can be difficult to obtain in analytical form for complex or
proprietary magnet designs. However, a remarkable feature of Eqs.
(5a) and (5b), which relate the off-axis field and the on-axis field, is
that one can predict the field off-axis without knowing the exact
current configuration that gives rise to Bz(0, z). In fact, any formula
that adequately captures the behavior of the on-axis magnetic field
can be used to predict the field off-axis through Eqs. (5a) and (5b).
This gives us freedom to choose a reasonably simple functional
form to describe the magnetic field and use this to calculate the
longitudinal relaxation rate in the near-axis region. In our studies,
we have found that a simple solenoid model is sufficient to approx-
imate the observed on-axis fringe field in our superconducting MR
magnet, with Bz(0, z) given by

Bzð0; zÞ ¼ A
L=2þ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ ðL=2þ zÞ2
q þ L=2� zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ ðL=2� ZÞ2
q

0
B@

1
CA; ð7Þ

where L is the length of the solenoid, R is the radius of the solenoid,
and A is the factor proportional to the current density in the sole-
noid. Substituting Eq. (7) into Eqs. (4) and (6) yields the longitudinal
relaxation rate 1=TG

1 on the axis and in the near-axis region,
respectively.

3. Experimental methods

3.1. Hyperpolarization methods

Hyperpolarized 3He (99.999% pure, Spectra Gases Inc., Alpha,
NJ) was prepared for relaxation measurements by spin-exchange
optical pumping [26]. 3He was polarized overnight to 30–40% using
a prototype commercial polarizer (model 9800, MITI, Durham, NC).
Prior to relaxation experiments, the spin-exchange optical cell was
cooled to room temperature, and�100 ml of HP 3He was dispensed
into 8 � 10 cm2 Tedlar bags (Jensen Inert Products, Coral Springs,
FL) at atmospheric pressure.

3.2. Magnetic field mapping

Magnetic field mapping and relaxation measurements were
made for a 2-T horizontal bore magnet (Oxford Instruments,
Oxford, UK) with a 30-cm bore. Its magnetic field was measured
along the central axis (i.e., z-axis) and 11.4-cm off-axis using a
gauss-meter (Model 5080 F.W. Bell, Orlando, FL). The on-axis field
has only an axial component ðẑÞ, whereas the off-axis field has both
axial ðẑÞ and radial ðq̂Þ components. The measured on-axis
magnetic field data were fit using a non-linear least squares
algorithm to the solenoid model in Eq. (7) to determine the values
of A, L, and R that best described the magnet (see Table 1). These
values were then used in conjunction with Eqs. (5a) and (5b) to
predict both the longitudinal and transverse components of the
field 11.4-cm off-axis and these predictions were compared with
the field measurements (see Fig. 1).
3.3. HP 3He T1 measurements

Inhomogeneity-induced relaxation is expected to be largest for
3He compared with other noble gases given its sizeable free
diffusion coefficient (�2 cm2/s at one atmosphere and room
temperature). Therefore, 3He was used to measure the position-
dependent relaxation time in the vicinity of the 2-T magnet. Prior
to starting the relaxation measurements, the 3He NMR signal was
measured in the Tedlar bag using a low-field polarimeter for HP
gases [27]. The polarimeter had a holding field of 7 Gauss provided
by a pair of Helmholtz coils with a radius of 30 cm.

The T1 of HP 3He as a function of the distance from the center of
the superconducting magnet isocenter was made by shuttling the
3He bag to the position of interest, leaving it to relax for a fixed per-
iod of time, and returning to the measurement station to record the
NMR signal. This was repeated several times to obtain a complete
T1 decay curve at each position. For a typical experiment, it took
�10 s to move the bag from the polarimeter to the relaxation posi-
tion, where the bag was left for exactly 30 s. These steps were re-
peated five times for a given location in the fringe field region. The
time spent in shuttling the bag (�10 s) and on the measurement
station (�10 s) was ignored because the relaxation during these
time periods is negligible compared with that experienced in the
strong field gradients near the magnet.

Prior to fitting the NMR signals to determine a T1 for each posi-
tion, the data were corrected for the small amount of polarization
lost due to application of the RF pulses used for measuring polari-
zation. The loss factor was determined by taking 10 successive
polarization measurements with 1 s intervals to minimize the ef-
fect of wall relaxation. The resulting polarization values were then
fit to the functional form P(n) = P0fn, where P0 is the initial polari-
zation, f is the fractional polarization remaining after each pulse,
and n is the index of the measurement number. Since the mea-
sured T1 is sensitive to f, four sets of loss factor measurements were
carried out and resulted in an average retained fraction,
�f ¼ 0:9797� 0:0033. The T1 at each location was obtained by using
a modified exponential decay function to fit the measurement to
SðnÞ ¼ S0 exp �nTR

T1

� �
�f 2n; ð8Þ
where TR = 30 s is the time the bag spent in the relaxation position.
The loss due to the RF pulse for each time point is �f 2 because two
consecutive polarization measurements were taken for each time
point. The uncertainty from the measured �f dominates the error
in T1 over all other uncertainties in our experiments, such as the fit-
ting error and the dimension of the Tedlar bag.

The measured relaxation time described above consists of three
mechanisms—wall relaxation TW

1 , magnetic field gradient-induced
relaxation TG

1 , and the intrinsic 3He–3He relaxation T int
1 given by
1
T1
¼ 1

TW
1

þ 1
TG

1

þ 1

T int
1

: ð9Þ
The intrinsic 3He–3He dipole relaxation is on the order of 1 month
and can be ignored. The wall relaxation TW

1 was determined with
the bag in the polarimeter (where TG

1 was negligible) and measured
to be 5125 ± 264 s. This provided only a minor correction to the
measured relaxation times.
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Fig. 1. Spatial dependence of the fringe magnetic field of the 2-T superconducting
magnet. The experimentally measured fringe field is well described by a simple
solenoid with radius R = 22.2 cm and length L = 75.0 cm. Here, z = 0 represents the
center of the magnet. The insets show the same curves enlarged to cover the range
considered in the relaxation rate measurements. (a) Spatial variation in Bz. (b)
Spatial variation in Bq. Because the on-axis field does not have a q component, only
the field 11.4 cm off-axis is shown.

Fig. 2. Longitudinal relaxation rate of HP 3He at 1 atm as a function of position
along the z-axis in the fringe field of the 2-T magnet. The solid curve is calculated
from Eq. (5) based on modeling the magnet as a solenoid. The squares are the
experimentally determined relaxation rate corrected by the retention factor and the
wall relaxation rate 1=TW

1 . The vertical dashed line is, where 1=TG
1 reaches a

maximum based on the calculation. Gradient-induced relaxation dominates all
other mechanisms and varies by more than 3-fold over a range of less than one
meter.

Table 1
Parameters used to characterize the fringe field.

Primary Solenoid Shielding Solenoida

L (cm) R (cm) A (T) Ls (cm) Rs (cm) As (T)

2-T unshielded b 75.0 ± 0.1 22.2 ± 0.1 1.2707 N/A N/A N/A
2-T shielded b 75.0 ± 0.1 22.2 ± 0.1 1.74 100 35 �0.493
1.5-T shielded c 174.5 ± 0.1 39.2 ± 0.1 1.745 284.5 ± 0.1 131.7 ± 0.1 �0.04708

a Subscript s refers to values for the reversed solenoid used to model the self-shielded configuration.
b Values are based on best fits of the measured on-axis field.
c Values are based on best fits of the solenoid model to the exact current configuration of the magnet ranging from 50 cm to 300 cm.
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4. Results and discussion

The fringe magnetic field measured on-axis for the 2-T magnet
is compared to the field calculated using the solenoid model and
plotted in Fig. 1. The calculated on-axis field best approximates
the measured one using L = 75.0 ± 0.1 cm and R = 22.2 ± 0.1 cm
for the length and radius of the solenoid (see Table 1). Fig. 1a
shows clearly that Eqs. (5a) and (5b) in conjunction with the sim-
ple solenoid model predict the z component of the off-axis fringe
field well. Applying the same model to predict the q component
of the off-axis fringe field again (Fig. 1b) shows good agreement,
except that the measured field begins to deviate from the predicted
function at about z = 75 cm. This could indicate that the approxi-
mations used to arrive at Eq. (5) are not fully valid this far off-axis
or may reflect the limitations of this simple solenoid model at large
z or r. Nonetheless, the agreement between measured and calcu-
lated fields is sufficiently good to suggest that the solenoid model
will be adequate for calculating the inhomogeneity-induced relax-
ation rate of this magnet geometry.

The solenoid model is used in conjunction with on-axis Eq. (4)
to calculate the longitudinal relaxation rate 1=TG

1 of 3He in the
fringe field of the magnet. The prediction is plotted as a solid line
in Fig. 2, along with data points representing the experimentally
determined values of 1=TG

1 . The measured values of 1=TG
1 show a

maximum rate of 3.83 � 10�3 s�1 at z = 47 cm from the magnet
isocenter, which is in good agreement with the maximum rate of
3.71 � 10�3 s�1 at zmax = 51.0 cm predicted by the solenoid model.
The predicted position of maximum relaxation is 4 cm off from the
measured one; however, the size of this discrepancy is smaller
than the dimensions of the Tedlar bag, making this difference
understandable. In fact, the measured 1=TG

1 is in excellent agree-
ment with predictions at all positions.

Given the good agreement between theory and measurement
for one specific magnet design, it is reasonable to apply this mod-
eling approach to other magnet configurations. In recent years,
self-shielded (actively-shielded) magnet designs have gained
increasing prominence in NMR and MRI. These designs generate
a field that rolls off rapidly with distance and are therefore, likely
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to cause even faster relaxation. To simulate this effect, we take our
2-T magnet design and make it hypothetically self-shielded by
adding another solenoid to our model with a larger radius. The cur-
rent of the larger solenoid is reversed and adjusted, so that the di-
pole field from the outer solenoid cancels the dipole field from the
inner solenoid [28]. The current of the inner solenoid is increased
to retain a 2-T primary field on-axis. The parameters used for the
reversed solenoid are also shown in Table 1. The calculated on-axis
1=TG

1 for the self-shielded solenoid is plotted in Fig. 3a, together
with the unshielded one. The maximum relaxation rate is nearly
3-fold higher (1.37 � 10�3 s�1) for the shielded versus unshielded
design (3.71 � 10�3 s�1). The point at which maximum relaxation
occurs is also shifted slightly further out from the magnet center.

We have also calculated 1=TG
1 for a 1.5-T self-shielded clinical

magnet (GE Healthcare, 60 cm bore). The current configuration of
the clinical magnet is proprietary, but was provided to us so that
its fringe field and associated 1=TG

1 could be computed exactly.
For reference, we have also simulated this magnet using a simpli-
fied model based on two nested solenoids as discussed for the 2-T
magnet. The parameters for the two solenoids used in the calcula-
tion are shown in Table 1. The calculated 1=TG

1 based on the sole-
noid model agrees well with that based on the exact current
configuration and suggests the simple model is again adequate.
For further comparison, we then ‘‘turn off’’ all the reversed current
in the exact current configuration, to evaluate the magnet as if it
were unshielded and calculate the associated 1=TG

1 as shown in
Fig. 3b. The comparison shows the maximum 1=TG

1 to be 2-fold fas-
ter for the shielded (1.4 � 10�3 s�1) versus unshielded
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Fig. 3. The effect of a shielded magnet design on 1=TG
1 of HP 3He is compared to an

unshielded design. (a) 2-T medium-bore magnet. (b) 1.5-T clinical magnet. The solid
lines are self-shielded solenoids and the dashed lines are unshielded solenoids. For
the clinical 1.5-T magnet (b), the calculated 1=TG

1 is shown using both the exact
current configuration provided by the manufacturer (dotted line) and a simplified
representation based on two nested solenoids (solid line).
(7.4 � 10�3 s�1) design. The peak relaxation rate occurs about
120 cm from the magnet isocenter, and diminishes by an order of
magnitude 400 cm from the isocenter. However, the maximum
relaxation rate on the axis of a self-shielded clinical magnet is still
an order of magnitude slower than that near the self-shielded 2-T
small magnet.

Some physical insight can be gained regarding the typical spa-
tial dependence of 1=TG

1 by substituting the solenoid model Eq.
(7) into Eq. (4). The resulting relaxation rate is given by

1
TG

1

/ 4R4

L2

1
½ð1þ2z=LÞ2þð2R=LÞ�3=2 � 1

½ð1�2z=LÞ2þð2R=LÞ2 �3=2

1þ2z=L
½ð1þ2z=LÞ2þð2R=LÞ2 �1=2 þ 1�2z=L

ð1�2z=LÞ2þð2R=LÞ1=2

8<
:

9=
;

2

: ð10Þ

Eq. (10) shows that 1=TG
1 is approximately proportional to 1/L2, and

therefore suggests that the fringe field of a long magnet should gen-
erally cause slower relaxation. Moreover, Eq. (10) shows that for the
case 2R=L	 1, the gradient, and thus the relaxation rate, will be
maximized at z � ±L/2, which corresponds to the edges of the sole-
noid. For the less unusual case of R
 L, numerical evaluation of Eq.
(10) shows that the peak relaxation rate moves to z � ±R.

To this point, our calculations and discussions have been lim-
ited to the on-axis relaxation rate and have shown that the theory
and experiment agree well. Although most practical studies will
store and deliver HP gas along the axis, it is useful to consider
the degree to which relaxation increases away from the axis. The
off-axis relaxation rate can be calculated using the more general
near-axis approximation in Eq. (6). Using our unshielded 2-T mag-
net as an example, and setting q = 10 cm, while keeping z at 51 cm,
where relaxation is maximum on-axis, the approximate solution
gives a relaxation rate of 5.2 � 10�3 s�1, which is 40% faster than
the on-axis rate due to lack of symmetry. This rate continues to in-
crease with q, but the approximation becomes less accurate, and
Eq. (1) must be numerically evaluated using the exact field calcu-
lated from the Biot-Savart integration. Additionally, B0 will no
longer point along the z-direction, making the coordinate system
defining the local field and the gradient components position-
dependent. The calculated relaxation rate is shown in Fig. 4, and
Fig. 4. Calculated 1=TG
1 of HP 3He in the vicinity of the 2-T small bore magnet based

on the solenoid model and the values stated in Table 1. The field is computed
exactly by using Biot-Savart integration. Relaxation rates cannot be evaluated in the
vicinity of the solenoid current loops ðq ¼ 22 cm; jzj 6 37:5 cmÞ and therefore this
part of the plot has been set to zero for clarity.
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has the interesting feature that for any value of q, the maximum
relaxation rate occurs at nearly the same value of z as the maxi-
mum on-axis rate. The relaxation rate increases rapidly with q,
reaching 3.6 � 10�2 s�1 (�28 s) at q = 20 cm, the largest radial dis-
tance for which a relaxation rate could be reliably calculated. As
expected, once q exceeds the radius of the solenoid in the model,
the relaxation rate begins to decrease. Hence, this numerical eval-
uation shows that 1=TG

1 is likely to be a maximum at the edge of the
solenoid (q � R) and can exceed the peak relaxation rate observed
on-axis by nearly an order of magnitude.

Finally, note that the gradients are directly proportional to the
field strength. Thus, Eq. (1) indicates that the relaxation rates do
not depend on B0, but rather only on the particular geometry of the
current configuration of the magnet. Hence, the calculations we have
done for our 2-T, small animal imaging magnet should be equally
applicable to a 4.7-T or 7-T system of similar geometry, and those
for the 1.5-T clinical magnet would be equally applicable at 3-T.

While we have not reported direct measurements for 129Xe, it
can reasonably be surmised that gradient-induced relaxation rate
will be �35-times slower than that observed for 3He. This large dif-
ference arises from the substantially smaller free diffusion coeffi-
cient [29] of 5.71 � 10�2 cm2/s for 129Xe compared to 3He
(2.0 cm2/s). Thus, gradient relaxation should be considered for
129Xe, but it is unlikely to be as significant a problem as for 3He.
For instance, the worst ‘‘spot’’ in the on-axis fringe field of the 2-
T small bore magnet gives a relaxation time about 140 min for
129Xe, which is on the same order as the relaxation time due to
the wall relaxation.
5. Conclusion

We have shown that the minimum relaxation time for 3He in
the vicinity of an unshielded small bore MR system can be as short
as 4 min on-axis and is reduced to 0.5 min, when moving out
20 cm in the radial direction. Moreover, the minimum on-axis
3He relaxation time would drop to roughly 1.2 min, if the magnet
were self-shielded. Gradient-induced relaxation in a typical self-
shielded clinical magnet is less severe, but still significant and is
expected to contribute a minimum on-axis 3He relaxation time of
roughly 12 min. We have also shown that the cylindrical symmetry
of most magnet systems enables the off-axis fringe field to be pre-
dicted simply by measuring the on-axis field. Moreover, any model
that adequately captures the behavior of the fringe field can be
used to calculate the gradient-induced longitudinal relaxation.
We have shown for the cases considered here, that a simple sole-
noid model is adequate. Taken together, these results provide a
general approach for predicting the gradient-induced relaxation
rate and the position, where this rate is maximized. This informa-
tion, in turn, provides a means of maximizing the lifetime of HP
gases stored within the fringe field of most superconducting mag-
net systems.

Acknowledgments

The authors wish to thank Sally Zimney for carefully proofread-
ing the manuscript. This work was conducted at the Duke Center
for In Vivo Microscopy, an NIH/NCRR National Biomedical Technol-
ogy Research Center (P41 RR005959) with further support from
NCI (R01 CA142842).

Appendix A. Transformation of the rate equation into
cylindrical coordinates

In cylindrical coordinates the gradient of Bx is given by
rBx ¼ @Bx

@q q̂þ 1
q
@Bx
@/ /̂þ @Bx

@z ẑ. Therefore
jr
!

Bxj2 þ jr
!

Byj2 ¼
@Bx

@q

� �2

þ 1
q
@Bx

@/

� �2

þ @Bx

@z

� �2

þ @By

@q

� �2

þ 1
q
@By

@/

� �2

þ @By

@z

� �2

: ðA1:1Þ

To evaluate this expression, we express Bx and By in cylindrical coor-
dinates as Bx ¼ Bq cos /� B/ sin / and By ¼ Bq sin /þ B/ cos /,
where / is the polar angle and q is the radial component. However,
for the case of a solenoid, which has no azimuthal component of
magnetic field (B/ = 0) we have simply, Bx = Bq cos / and By = Bq
sin /. Substituting these into Eq. (A1.1) gives sum of transverse gra-
dients as

jr
!

Bxj2 þ jr
!

Byj2 ¼
@ðBq cos /Þ

@q

� �2

þ 1
q
@ðBq cos /Þ

@/

� �2

þ @ðBq cos /Þ
@z

2
 !

þ 1
q
@ðBq sin /Þ

@q

� �2

þ 1
q
@ðBq sin /Þ

@/

� �2

þ 1
q
@ðBq sin /Þ

@Z

� �2

¼ @Bq

@q

� �2

þ 1
q
@Bq

@/

� �2

þ @Bq

@z

� �2

þ
B2

p

q2

¼ jr
!

Bqj2 þ
B2

q

q2 : ðA1:2Þ
Appendix B. Off-axis approximations

To relate Bz(q, z) and Bq(q, z), it is first necessary to expanded
these functions in Taylor series in terms of q as

Bzðq; zÞ ¼ Bzð0; zÞ þ q
@

@q
Bzð0; zÞ þ

q2

2!

@2

@q2 Bzð0; zÞ þ � � �

¼
X1
n¼0

qn

n!
BðnÞz ð0; zÞ; ðA2:1aÞ

Bqðq; zÞ ¼ Bqð0; zÞ þ q
@

@q
Bqð0; zÞ þ

q2

2!

@2

@q2 Bqð0; zÞ þ � � �

¼
X1
n¼0

qn

n!
BðnÞq ð0; zÞ; ðA2:1bÞ

where BðnÞz and BðnÞq are the nth derivative of Bz and Bq with respect to
q. Since the magnetic field is divergence-free, the relationship be-
tween Bz and Bq is given by

r
!
� B
!
¼ 1

q
@

@q
ðqBqÞ þ

@

@z
Bz ¼ 0: ðA2:2Þ

This relatively truncated expression arises because B/ = 0 and Bq
and Bz do not depend on /. Substituting Eqs. (A2.1a) and (A2.1b)
into Eq. (A2.2) yields

1
q

Bð0Þq ð0; zÞ þ
X1
n¼0

qn nþ 2
ðnþ 1Þ! Bðnþ1Þ

q ð0; zÞ þ 1
n!

@

@z
BðnÞz ð0; zÞ

� �
¼ 0:

ðA2:3Þ

Since Eq. (A2.3) must hold for any value of q, Bð0Þq ð0; zÞ ¼ 0 and every
term in the summation must be zero as well. Therefore the terms
within the summation can be used to relate BðnÞq ð0; zÞ to BðnÞz ð0; zÞ
by the equality

�nþ 2
nþ 1

Bðnþ1Þ
q ð0; zÞ ¼ 1

@z
BðnÞz ð0; zÞ: ðA2:4Þ
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Because no current is present near the central axis of the magnet,
the magnetic field ~B must also be curl-free. For any magnet having
a symmetric current only in the /̂ direction, this leaves the only
non-trivial term in the curl equation to be the /̂ component. Hence,

r
!
�~B ¼ @Bq

@z
� @Bz

@q

� �
/̂

¼
X1
n¼0

qn

n!

@

@z
BðnÞq ð0; zÞ �

X1
n¼1

qn�1

ðn� 1Þ! BðnÞz ð0; zÞ
( )

/̂

¼
X1
n¼0

qn

n!

@

@z
BðnÞq ð0; zÞ � Bðnþ1Þ

z ð0; zÞ
� �( )

/̂ ¼ 0: ðA2:5Þ

Eq. (A2.5) provides an additional relationship between the deriva-
tives BðnÞq ð0; zÞ and BðnÞz ð0; zÞ, namely

@

@z
Bðn�1Þ

q ð0; zÞ ¼ BðnÞz ð0; zÞ: ðA2:6Þ

Combining Eqs. (A2.4) and (A2.6) yields a recursion equation for
BðnÞq ð0; zÞ with the form

@2

@z2 BðnÞq ð0; zÞ ¼ �
nþ 3
nþ 2

Bðnþ2Þ
q ð0; zÞ: ðA2:7Þ

Since, as described previously, Bð0Þq ð0; zÞ ¼ 0, this recursion relation
requires all even terms to vanish, leaving only the odd terms
(n = 2k + 1). Therefore, these terms can be written as

Bð2kþ1Þ
q ð0; zÞ ¼ ð�1Þk

22k

ð2kþ 1Þ!
ð2kþ 2Þðk!Þ2

@2kþ1

@z2kþ1 Bð0Þz ð0; zÞ ðk ¼ 0;1;2; . . .Þ;

ðA2:8Þ

where Eq. (A2.4) has been used to express Bð1Þq ð0; zÞ in terms of
Bð0Þz ð0; zÞ. As BðnÞz ð0; zÞ is related to Bðn�1Þ

q ð0; zÞ through Eq. (A2.6), all
the even terms (n = 2k) of BðnÞz ð0; zÞ are non-zero and they can be ex-
pressed as

Bð2kÞ
z ð0; zÞ ¼

ð�1Þk

22k

ð2kÞ!
ðk!Þ2

@2k

@z2k
Bð0Þz ð0; zÞ ðk ¼ 0;1;2 . . .Þ: ðA2:9Þ

By substituting Eqs. (A2.8) and (A2.9) into Eq. (A2), both Bzðq; zÞ and
Bqðq; zÞ can be expressed in terms of Bzð0; zÞ and its higher-order
derivatives as

Bzðq; zÞ ¼
X1
k¼0

ð�Þk

ðk!Þ24k
q2k @

2k

@z2k
Bð0Þz ð0; zÞ; ðA2:10aÞ

Bqðq; zÞ ¼
X1
k¼0

ð�1Þkþ1

ð2kþ 2Þðk!Þ24k
q2kþ1 @

2kþ1

@z2kþ1 Bð0Þz ð0; zÞ: ðA2:10bÞ

Note that this Taylor expansion converges when q < R0, where R0 is
the smallest radius of the current distribution(s) constituting the
magnet. If Bz(0, z) varies slowly in space (i.e., Bðkþ2Þ

z ð0; zÞ=
BðkÞz ð0; zÞ 	 1), the expansion of Bz and Bq will converge quickly
and consequently, it is sufficient to truncate the series expansion
in Eqs. (A2.10a) and (A2.10b) at the second term, which leads to

Bzðq; zÞ ’ Bzð0; zÞ �
q2

4
@2

@z2 Bzð0; zÞ; ðA2:11aÞ

Bqðq; zÞ ’ �
q
2
@

@z
Bzð0; zÞ þ

q3

16
@3

@z3 Bzð0; zÞ: ðA2:11bÞ
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